Robotics and Autonomous Systems 59 (2011) 22-33

journal homepage: www.elsevier.com/locate/robot

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

Self-learning fuzzy logic controllers for pursuit-evasion differential games

Sameh F. Desouky *, Howard M. Schwartz

Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 17 February 2010
Accepted 13 September 2010
Available online 1 October 2010

Keywords:

Differential game
Function approximation
Fuzzy control

Genetic algorithms
Q(X)-learning
Reinforcement learning

This paper addresses the problem of tuning the input and the output parameters of a fuzzy logic controller.
The system learns autonomously without supervision or a priori training data. Two novel techniques
are proposed. The first technique combines Q(A)-learning with function approximation (fuzzy inference
system) to tune the parameters of a fuzzy logic controller operating in continuous state and action spaces.
The second technique combines Q(A)-learning with genetic algorithms to tune the parameters of a fuzzy
logic controller in the discrete state and action spaces. The proposed techniques are applied to different
pursuit-evasion differential games. The proposed techniques are compared with the classical control
strategy, Q())-learning only, reward-based genetic algorithms learning, and with the technique proposed
by Dai et al. (2005) [19] in which a neural network is used as a function approximation for Q-learning.
Computer simulations show the usefulness of the proposed techniques.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fuzzy logic controllers (FLCs) are currently being used in en-
gineering applications [1,2] especially for plants that are complex
and ill-defined [3,4] and plants with high uncertainty in the knowl-
edge about its environment such as autonomous mobile robotic
systems [5,6]. However, FLC has a drawback of finding its knowl-
edge base which is based on a tedious and unreliable trial and er-
ror process. To overcome this drawback one can use supervised
learning [7-11] that needs a teacher or input/output training data.
However, in many practical cases the model is totally or partially
unknown and it is difficult or expensive and in some cases impos-
sible to get training data. In such cases it is preferable to use rein-
forcement learning (RL).

RL is a computational approach to learning through interaction
with the environment [12,13]. The main advantage of RL is that it
does not need either a teacher or a known model. RL is suitable
for intelligent robot control especially in the field of autonomous
mobile robots [14-18].

1.1. Related work

Limited studies have applied RL alone to solve environmental
problems but its use with other learning algorithms has increased.
In [19], a RL approach is used to tune the parameters of a FLC.
This approach is applied to a single case of one robot following
another along a straight line. In [15,20], the authors proposed

* Corresponding author. Tel.: +1 613 520 2600x5725.
E-mail addresses: sameh@sce.carleton.ca, samehfarahat@gmail.com
(S.F. Desouky), schwartz@sce.carleton.ca (H.M. Schwartz).

0921-8890/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2010.09.006

a hybrid learning approach that combines a neuro-fuzzy system
with RL in a two-phase structure applied to an obstacle avoidance
mobile robot. In phase 1, supervised learning is used to tune the
parameters of a FLC then in phase 2, RL is employed so that the
system can re-adapt to a new environment. The limitation in their
approach is that if the training data are hard or expensive to obtain
then supervised learning cannot be applied. In [21], the authors
overcame this limitation by using Q-learning as an expert to obtain
training data. Then the training data are used to tune the weights
of an artificial neural network controller applied to a mobile robot
path planning problem.

In [22], a multi-robot pursuit-evasion game is investigated. The
model consists of a combination of aerial and ground vehicles.
However, the unmanned vehicles are not learning. They just do the
actions they received from a central computer system. In [23], the
use of RL in the multi-agent pursuit-evasion problem is discussed.
The individual agents learn a particular pursuit strategy. However,
the authors do not use a realistic robot model or robot control
structure. In [24], RL is used to tune the output parameters of a
FLC in a pursuit-evasion game.

A number of articles used the fuzzy inference system (FIS) as
a function approximation with Q-learning [25-28] however these
works have the following disadvantages: (i) the action space is
considered to be discrete and (ii) only the output parameters of
the FIS are tuned.

1.2. Paper motivation
The problem assigned in this paper is that we assume that

the pursuer/evader does not know its control strategy. It is not
told which actions to take so as to be able to optimize its control

http://dx.doi.org/10.1016/j.robot.2010.09.006
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:sameh@sce.carleton.ca
mailto:samehfarahat@gmail.com
mailto:schwartz@sce.carleton.ca
http://dx.doi.org/10.1016/j.robot.2010.09.006

S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33 23

R

FLS Q) " O

A
. n(0,0,)
+
51 FLC - 50 = Environment
¥ s

Fig. 1. The proposed QLFIS technique.

strategy. We assume that we do not even have a simplistic PD
controller strategy. The learning goal is to make the pursuer/evader
able to self-learn its control strategy. It should do that on-line by
interaction with the evader/pursuer.

From several learning techniques we choose RL. RL methods
learn without a teacher, without anybody telling them how to solve
the problem. RL is related to problems where the learning agent
does not know what it must do. It is the most appropriate learning
technique for our problem.

However, using RL alone, in most cases, has the limitation in
that it is too hard to visit all the state-action pairs. We try to
cover most of the state-action space but we cannot cover all the
space. In addition, there are hidden states that are not taken into
consideration due to the discretization process. Hence RL alone
cannot find the optimal strategy.

The proposed Q())-learning based genetic fuzzy controller
(QLBGFC) and the proposed Q())-learning fuzzy inference system
(QLFIS) are two novel techniques used to solve the limitation in RL.
The limitation is that the RL method is designed only for discrete
state—action spaces. Since we want to use RL in the robotics domain
which is a continuous domain, then we need to use some type
of function approximation such as FIS to generalize the discrete
state—action space into a continuous state-action space. Therefore,
from the RL point of view, a FIS is used as a function approximation
to compensate for the limitation in RL. And from the FIS point of
view, RL is used to tune the input and/or the output parameters of
the fuzzy system especially if the model is partially or completely
unknown. Also, in some cases it is hard or expensive to get a priori
training data or a teacher to learn from. In this case, the FIS is
used as an adaptive controller whose parameters are tuned on-
line by RL. Therefore, combining RL and FIS has two objectives; to
compensate the limitation in RL and to tune the parameters of the
FLC.

In this paper, we design a self-learning FLC using the proposed
QLFIS and the proposed QLBGFC. The proposed QLBGFC is used
when the state and the action spaces can be discretized in such
a way that make the resulting state and action spaces have accept-
able dimensions. This can be done, as we will see in our case, if the
state and the action values are bounded. If not then the proposed
QLFIS will be suitable. In this work and for the comparatively pur-
pose, we will use both of the proposed techniques.

The learning process in the proposed QLFIS is performed
simultaneously as shown in Fig. 1. The proposed QLFIS is used
directly with the continuous state and action spaces. The FIS is
used as a function approximation to estimate the optimal action-
value function, Q*(s, a), in the continuous state and action spaces
while the Q())-learning is used to tune the input and the output
parameters of both the FIS and the FLC.

In the proposed QLBGFC, the learning process is performed
sequentially as shown in Fig. 2. The proposed QLBGFC can be
considered as indirect method of using function approximation.
First, in phase 1, the state and the action spaces are discretized and
Q(X)-learning is used to obtain an estimate of the desired training

Pursuit
evasion

model Phase 2
K Stage 2
capture time
Phase 2
Stage 1
s a
s,
B Self-learning | &,
L controller
Phase 1

Pursuit evasion
model

Fig. 2. The proposed QLBGFC technique.

Eﬁ
state reward

S, n action

a,

T
5,0 Environment P

Fig. 3. Agent-environment interaction in RL.

data set, (s, a*). Then this training data set is used by genetic
algorithms (GAs) in phase 2 stage 1 to tune the input and the
output parameters of the FLC which are used at the same time to
generalize the discrete state and action values over the continuous
state and action spaces. Finally in phase 2 stage 2, the FLC is further
tuned during the interaction between the pursuer and the evader.

The proposed techniques are applied to two pursuit-evasion
games. In the first game, we assume that the pursuer does not
know its control strategy whereas in the second game, we increase
the complexity of the system by assuming that both the pursuer
and the evader do not know their control strategies or the other’s
control strategy.

The rest of this paper is organized as follows: some basic ter-
minologies for RL, FIS and GAs are reviewed in Section 2, Sec-
tion 3 and Section 4, respectively. In Section 5, the pursuit-evasion
game is described. The proposed QLFIS and the proposed QLBGFC
techniques are described in Section 6 and Section 7, respectively.
Section 8 presents the computer simulation and the results are dis-
cussed in Section 9. Finally, conclusion and future work are dis-
cussed in Section 10.

2. Reinforcement learning

Agent-environment interaction in RL is shown in Fig. 3 [12]. It
consists mainly of two blocks, an agent which tries to take actions
so as to maximize the discounted return, R, and an environment
which provides the agent with rewards. The discounted return, R;,
at time t is defined as

Re=) v e (1)
k=0

24 S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33

where ;1 is the immediate reward, y is the discount factor, (0 <
y < 1), t is the terminal point. Any task can be divided into
independent episodes and t is the end of an episode. If 7 is finite
then the model is called a finite-horizon model [13]. If T — o0
then the model is called an infinite-horizon discounted model and
in this case y < 1 to avoid infinite total rewards.

The performance of an action, g, taken in a state, s, under policy,
7, is evaluated by the action value function, Q7 (s, a),

Q"(s,a) = Ex(Ri|sy =s,a; =a)

T
= Ex (Z Vkrk+r+1|5r =S,0 = a) (2)

k=0

where E, (-) is the expected value under policy, 7. The way to
choose an action is a trade-off between exploitation and explo-
ration. The ¢-greedy action selection method is a common way of
choosing the actions. This method can be stated as

with probability 1 — ¢;

with probability e (3)

a*
e = {random action,
where ¢ € (0, 1) and a* is the greedy action defined as

a* = argmax Q(s, a). (4)
a/

The RL method is searching for the optimal policy, 7*, by
searching for the optimal value function, Q *(s, a), where

Q*(s,a) = max Q7 (s, a). (5)

Many algorithms have been proposed for estimating the optimal
value functions. The most widely used and well-known control
algorithm is Q-learning [29].

Q-learning, which was first introduced by Watkins in his
Ph.D. [30], is an off-policy algorithm. Therefore, it has the ability
to learn without following the current policy. The state and action
spaces are discrete and their corresponding value function is stored
in a what is known as a Q-table. To use Q-learning with continuous
systems (continuous state and action spaces), one can discretize
the state and action spaces [31-34,21,35] or use some type of
function approximation such as FISs [36,26,37], neural networks
(NNs)[12,38,19], or use some type of optimization technique such
as GAs [39,40]. A one-step update rule for Q-learning is defined as

Qe (se, ar) = Qe(se, ap) +ad; (6)

where « is the learning rate, (0 < o < 1) and A, is the temporal
difference error (TD-error) defined as

Ap = Tepq + Yy Max Qe (Se41, @) — Qe (St, ar). (7)
a

Eq. (6) is a one-step update rule. It updates the value function ac-
cording to the immediate reward obtained from the environment.
To update the value function based on a multi-step update rule one
can use eligibility traces [12].

Eligibility traces are used to modify a one-step TD algorithm,
TD(0), to be a multi-step TD algorithm, TD(A). One type of
eligibility traces is the replacing eligibility [41] defined as: V s, a,

1, ifs=s;anda = a;;
e(s,a) =30, ifs =s;and a # a;; (8)
ryec—1(s,a), ifsz#s,

where eg = 0, and X is the trace-decay parameter, (0 < A < 1).
When A = 0 that means a one-step update, TD(0), and when A = 1
that means an infinite-step update. Eligibility traces are used to
speed up the learning process and hence to make it suitable for
on-line applications. Now we will modify (6) to be

Qr41(s, @) = Qi (s, @) + ae A (9)

1}

I
|
I
I
I
1
I
|
I
i
m
Fig. 4. Gaussian MF.

For the continuous state and action spaces, the eligibility trace is
defined as

aQt(st’ af)
d¢

where ¢ is the parameter to be tuned.

e =yAie—1+ (10)

3. Fuzzy inference system

The most widely used FIS models are Mamdani [42] and
Takagi-Sugeno-Kang (TSK) [43]. In this work we are interesting
in using the TSK model. A first-order TSK means that the output is
a linear function of its inputs while a zero-order TSK means that
the output is a constant function. For simplicity purpose we use a
zero-order TSK model. A Rule used in zero-order TSK model for N
inputs has the form

R : IFx;isAY AND ... ANDxyisAy, THENfi =K (11)

where Af. is fuzzy set of the ith input variable, x;, in rule R, | = 1,
2, ..., L K'is the consequent parameter of the output, f;, in rule R;.

The fuzzy output can be defuzzified into a crisp output using
one of the defuzzification techniques. Here, the weighted average
method is used and is defined as follows

L /N
> (1_[wh (Xi)> K

I=1 \i=1

LN
> (wh (&‘))
i=1

=1

f&) = (12)

where uAﬁ (x;) is the membership value for the fuzzy set Af of the
input x; in rule R;. Due to its simple formulas and computational
efficiency, the Gaussian membership function (MF) has been used
extensively especially in real-time implementation, and control.
The Gaussian MF depicted in Fig. 4 is defined as

_mh\?
MAf'(x,-) = exp (— (M)) (13)
O

where o and m are the standard deviation and the mean, respec-
tively.

The structure of the FIS used in this work is shown in Fig. 5.
Without loss of generality, we assume that the FIS model has 2
inputs, x; and x;, and one output, f, and each input has 3 Gaussian
MFs. The structure has two types of nodes. The first type is an
adaptive node (a squared shape) whose output need to be adapted
(tuned) and the second type is a fixed node (a circled shape) whose
output is a known function of its inputs.

The structure has 5 layers. In layer 1, all nodes are adaptive. This
layer has 6 outputs denoted by O', The output of each node in layer
1 is the membership value of its input defined by (13). In layer 2,
all nodes are fixed. The AND operation (multiplication) between
the inputs of each rule is calculated in this layer. This layer has 9
outputs denoted by 0,2, I=1,2,...,9.The output of each node in

S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33 25

Layer3: Layer4

X, X

7

2) 2 2 @ @ ¥ & & Q-
|

Fig. 5. Structure of a FIS model.

layer 2, known as the firing strength of the rule, wy, is calculated as
follows

2
|
0f = o =] [x). (14)
i=1

In layer 3, all nodes are fixed. This layer has 9 outputs denoted
by 0,3. The output of each node in layer 3 is the normalized firing
strength, w;, which is calculated as follows

_ 0? w;
@:M:Q’zg . (15)
>0 Yo
=1 =1

In layer 4, all nodes are adaptive. The defuzzification process that
uses the weighted average method, defined by (12), is performed
in this layer and the next layer. Layer 4 has 9 outputs denoted by
0;. The output of each node is

0} = O}K; = wiK;. (16)

Layer 5 is the output layer and has only one fixed node whose
output, f, is the sum of all its inputs as follows

9 9

05=f=2071=2511<1 (17)
=1 =1

which is the same as (12).

4. Genetic algorithms

Genetic algorithms (GAs) are search and optimization tech-
niques that are based on a formalization of natural genetics
[44,45]. GAs have been used to overcome the difficulty and com-
plexity in the tuning of the FLC parameters such as MFs, scaling
factors and control rules [46,8,47,5,48,6].

A GA searches a multidimensional parameter space to find
an optimal solution. A given set of parameters is referred to
as a chromosome. The parameters can be either real or binary
numbers. The GA is initialized with a number of randomly selected
parameter vectors or chromosomes. This set of chromosomes is the
initial population. Each chromosome is tested and evaluated based
on a fitness function (in control engineering we would refer to
this as a cost function). The chromosomes are sorted based on the
ranking of the fitness functions. One then selects a number of the
best, according to the fitness function, chromosomes to be parents
of the next generation of chromosomes. A new set of chromosomes
is selected based on reproduction.

y

The evader

The pursuer

Fig. 6. The pursuit-evasion model.

In the reproduction process, we generate new chromosomes,
which are called children. We use two GA operations. The first
operation is a crossover in which we choose a pair of parents and
select arandom point in all of their chromosomes and make a cross
replacement from one parent to another. The second operation is
a mutation in which a parent is selected and we change one or
more of its parameters to get a new child. Now, we have a new
population to test again with the fitness function.

The genetic process is repeated until a termination condition
is met. There are different conditions to terminate the genetic
process such as: (i) the maximum iteration is reached, (ii) a fitness
threshold is achieved, (iii) a maximum time is reached and (iv) a
combination of the previous conditions. In our work we cannot
use the maximum time condition since we use the learning time
as a parameter in our comparison. We use the maximum iteration
condition which is actually based on a threshold condition. The
number of GA iterations is determined based on simulations.
We tried different numbers of iterations and we determined the
number of iterations for which further training would not have any
significant improvement in performance. The coding process in the
proposed QLBGFC technique using GAs will be described in detail
in Section 7.

5. Pursuit-evasion differential game

The pursuit-evasion differential game is one application of
differential games [49] in which a pursuer tries to catch an evader
in the minimum time where the evader tries to escape from the
pursuer. The pursuit-evasion game is shown in Fig. 6. Equations of
motion for the pursuer and the evader robots are [50,51]

5‘1’ = V,' COS(Qi)

yi = Visin(6)) (18)
, Vi

0; = L tan(u;)

1
where “i” is “p” for the pursuer and is “e” for the evader, (x;, y;) is
the position of the robot, V; is the velocity, 6; is the orientation, L; is
the distance between the front and rear axle, and u; is the steering
angle where u; € [—uj,,,.]. The minimum turning radius is
calculated as

L
" tan(u;,,,)
Our strategies are to make the pursuer faster than the evader
(Vp > V.)but at the same time to make it less maneuverable than

the evader (up,,,,, < Uen.y)- The control strategies that we compare
our results with are defined by

uimax

(19)

Imin

Uipax 8i < ~Uipax
Ui = Si _uimax = 8i S uimax (20)
Uinax 8i > Uipa

26 S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33

5 = tan~! (y_y") —6 1)

“w

where “i” is “p” for the pursuer and is “e” for the evader. Capture
occurs when the distance between the pursuer and the evader is
less than a certain amount, £. This amount is called the capture
radius which is defined as

€= J e — %) + (e — yp)2 (22)

One reason for choosing the pursuit-evasion game is that the
time-optimal control strategy is known so, it can be a reference for
our results. By this way, we can check the validity of our proposed
techniques.

6. The proposed Q(1)-learning fuzzy inference system

A FIS is used as a function approximation for Q()\)-learning
to generalize the discrete state and action spaces into continuous
state and action spaces and at the same time Q()-learning is used
to tune the parameters of the FIS and the FLC. The structure of the
proposed QLFIS is shown in Fig. 1 which is a modified version of
the proposed techniques used in [19,24].

The difference between the proposed QLFIS and that proposed
in [24] is that in [24], the authors used FIS to approximate the value
function, V (s), but the proposed QLFIS is used to approximate the
action-value function, Q (s, a). In addition in [24], the authors tune
only the output parameters of the FIS and the FLC while in this
work the input and the output parameters of the FIS and the FLC
are tuned. The reason for choosing Q-learning in our work is that
it outperforms the actor-critic learning [52]. The main advantage
of Q-learning over actor-critic learning is exploration insensitivity
since Q-learning is an off-policy algorithm (see Section 2) whereas
actor-critic learning is an on-policy algorithm.

The difference between the proposed QLFIS and that proposed
in [19] is that in [19], the authors used neural networks (NNs) as
a function approximation but here we use the FIS as a function
approximation. There are some advantages of using FIS rather
than NNs such that: (i) linguistic fuzzy rules can be obtained from
human experts [53] and (ii) the ability to represent fuzzy and
uncertain knowledge [54]. In addition, our results show that the
proposed QLFIS outperforms the technique proposed in [19] in
both the learning time and the performance.

Now we will derive the adaptation laws for the input and the
output parameters of the FIS and the FLC. The adaptation laws will
be derived only once and are applied for both the FIS and the FLC.
Our objective is to minimize the TD-error, A;, and by using the
mean square error (MSE) we can formulate the error as

1 2

We use the gradient descent approach and according to the steep-
est descent algorithm, we make a change along the —ve gradient
to minimize the error so,

oE
pt+1) =0¢) —n— (24)
99
where 1 is the learning rate and ¢ is the parameter vector of the
FIS and the FLC where ¢ = [0, m, K]. The parameter vector, ¢, is
to be tuned. From (23) we get

0F 04
a¢ g
= A A, 0Q:(st, ur)
0Qc(se, ur) 3¢
Then from (7),

3£ — _At BQt(Sta ut)) (26)
a¢ ¢
Substituting in (24), we get
0
B(E+ 1) = B(0) + a, “L) 27)

a¢
We can obtain 9Q;(s;, u;)/d¢ for the output parameter, K, from
(17), where f is Q; (s;, u;) for the FIS and f is u for the FLC, as follows

D (s, u)

Then we can obtain dQ,(s¢, u;)/d¢ for the input parameters, a,-' and
mﬁ, based on the chain rule,

0Q; (e, u) _ 0Q; (s,) @

29
do! dw, o] (29)
0Q(s¢, u 0Q(s¢, ur) 0
Qi (rl t) _ Q:(s¢, ur) 70)1[(30)
am; dw; am;

1 1

The term 0Q:(s;, ur)/dw; is calculated from (17) and (15). The
terms dw;/do! and dw;/dm! are calculated from both (14) and
(13)so

0Qe(se, ur) (Kj— Qilse, ur)) 2(x; — mj)? (31)
do! > (oh)3
1
9Qe(se ur) (Ki— Qilse, ur)) 2(x; — my) (32)
aml Yo @)
1

Substituting from (28), (31) and (32) in (10) and modifying (27) to
use an eligibility trace, the update law for the FIS parameters be-
comes

Do (t + 1) = o (t) + nAce. (33)

The update law in (27) is applied also to the FLC by replacing
Q:(s¢, uy) with the output of the FLC, u. In addition and as shown
from Fig. 1, a random Gaussian noise, n(0, o;,), with zero mean and
standard deviation o, is added to the output of the FLC in order
to solve the exploration/exploitation dilemma as for example the
e-greedy exploration method used in the discrete state and action
spaces. Then the update law for the FLC parameters is defined by

ou (u.—u

Gu(t+1) = gu(t) +EA— (34)
Lo} o

where u, is the output of the random Gaussian noise generator and

& is the learning rate for the FLC parameters. The term du/d¢ can

be calculated by replacing Q; (s;, u;) with the output of the FLC, u,

in (28),(31) and (32).

7. The proposed Q()A)-learning based genetic fuzzy logic con-
troller

The proposed QLBGFC combines Q(A)-learning with GAs to tune
the parameters of the FLC. The learning process passes through two
phases as shown in Fig. 2. Now, we describe the FLC used in the
proposed technique then we will discuss the learning in the two
phases.

7.1. Fuzzy logic controller

A block diagram of a FLC system is shown in Fig. 7. The FLC has
two inputs, the error in the pursuer angle, §, defined in (21), and its

S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33 27

reference /7 0 u P2l
signal L FLC 4 Pursuer p
- da R robot
dt

Fig. 7. Block diagram of a FLC system.

derivative, 8, and the output is the steering angle, up. For the inputs
of the FLC, we use the Gaussian MF described by (13). For the rules
we modify (11) to be

R : IF 8 is AY AND § is A, THEN f; = K; (35)
wherel =1, 2, ..., 9.The crisp output, up, is calculated using (12)
as follows

9 /2

> <l_[' (Xi)) K
u,o ===t 7 (36)

P 9 2 .
z(MA«xi))
i=1

=1

7.2. Learning in phase 1

In phase 1, Q(A)-learning is used to obtain a suitable estimation
for the optimal strategy of the pursuer. The state, s, consists of the
error in angle of the pursuer, §, and its derivative, §, and the action,
a, is the steering angle of the pursuer, up,. The states, (8, §), and their
corresponding greedy actions, a*, are then stored in a lookup table.

7.2.1. Building the discrete state and action spaces

To build the state space we discretize the ranges of the inputs,
8 and &, by 0.2. The ranges of § and § are set to be from —1.0
to 1.0 so the discretized values for § and § will be (—1.0, —0.8,
-0.6,...,0.0,...,0.8, 1.0). There are 11 discretized values for &
and 11 discretized values for §. These values are combined to form
11 x 11 = 121 states.

To build the action space we discretize the range of the action,
up, by 0.1. The range of the action is set to be from —0.5 to
0.5 so the discretized values for u, will be (-0.5, —0.4, —0.3, ...,
0.0,...,0.4,0.5). There are 11 actions and the dimension of the
Q-table will be 121-by-11.

7.2.2. Constructing the reward function

How to choose the reward function is very important in RL
because the agent depends on the reward function in updating
its value function. The reward function differs from one system
to another according to the desired task. In our case we want the
pursuer to catch the evader in the minimum time. In other words,
we want the pursuer to decrease the distance to the evader at each
time step. The distance between the pursuer and the evader at time
t is calculated as follows

D) = \/(Xe(t) = Xp(0))% + (Ye(t) — yp(£))*. (37)
The difference between two successive distances, AD(t), is calcu-
lated as

AD(t) = D(t) — D(t + 1). (38)

A positive value of AD(t) means that the pursuer approaches the
evader. The maximum value of AD(t) is defined as

ADmax = VimaxT (39)

where V.« is the maximum relative velocity of the pursuer with
respect to the evader (Vimax = V, + Ve) and T is the sampling time.
So, we choose the reward, r, to be

AD(t)
ADmax '
The learning process in phase 1 is described in Algorithm 1.

Tty = (40)

Algorithm 1 (Phase 1: Q(A)-learning)

1: Discretize the state space, S, and the action space, A.
2: Initialize Q(s,a) =0 Vse€S,aecA.
3: Initializee(s,a) =0 VseS,aecA
4: For each episode
: Initialize (xp, y,) = (0, 0).
: Initialize (x, y.) randomly.
: Compute s; = (8, §) according to (21).
: Select a; using (3).
: For each play
i: Receive r¢; 1 according to (40).
ii: Observe s¢,1.
ii: Select a1 using (3).
iv: Calculate e;;; using (8).
v: Update Q(s¢, a;) according to (9).
f: End
End
Q < Q"
: Assign a greedy action, a*, to each state, s using (4).
: Store the state-action pairs in a lookup table.

oD AN T

OOy WU

7.3. Learning in phase 2

Phase 2 consists of two stages. In stage 1, the state-action pairs
stored in the lookup table are used as the training data to tune the
parameters of the FLC using GAs. Stage 1 is an off-line tuning. In
this stage, the fitness function used is the mean square error (MSE)
defined as

M

1 o 2

m=1

where M is the number of input/output data pairs and is equivalent
to the number of states, a*" is the mth greedy action obtained from
phase 1, and ug, is the output of the FLC. The GA in this stage is used
as supervised learning so the results of this stage will not be better
than that of phase 1 so we need to perform stage 2.

In stage 2, we run the pursuit-evasion game with the tuned FLC
as the controller. The GA is then used to fine tune the parameters
of the FLC during the interaction with the evader. In this stage, the
capture time which the pursuer wants to minimize is used as the
fitness function. In this stage, the GA is used as a reward-based
learning technique with a priori knowledge obtained from stage 1.

7.3.1. Coding a FLC into a chromosome

In phase 2, we use a GA to tune the input and the output
parameters of the FLC. Now, we will describe the coding of the
FLC parameters using the GA. Note that the coding process of the
FLC is the same for all the different GAs used in this paper so we
will describe it in general. The FLC to be learned has 2 inputs,
the error, §, and its derivative, §. Each input variable has 3 MFs
with a total of 6 MFs. We use the Gaussian MF defined by (13)
which has 2 parameters to be tuned. These parameters are the
standard deviation, o, and the mean, m. The total number of input
parameters to be tuned is 12 parameters. The rules being used is
defined by (35) that has a parameter, K, to be tuned with a total
number of 9 parameters to be tuned for the output part.

A FLC will be coded into a chromosome with length 12 + 9 =
21 genes as shown in Fig. 8. We use real numbers in the coding
process. The population consists of a set of chromosomes, P, (coded
FLCs). In the reproduction process, we generate new chromosomes
by using two GA operations. The first operation is crossover in
which we choose a pair of parents and select a random gene, g,
between 1 and 20 and make a cross replacement from one parent
to another as shown in Fig. 9. The second operation is mutation

28 S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33

standard deviations means
A A
s B s B
01 ‘%‘Cl‘ ‘Cﬁ‘Kl‘ Ky

input parameters output parameters

Fig. 8. AFLC coded into a chromosome.

i i i i i
|chr0mosomez | of | - ‘ geney geneq+1| | Ky |
Tl make a cross replacemem
i i+l i+1 i+1 i+1
|chr0m0some i+l | ot |]geneg genegiy IKg
4
(a) Old chromosomes.
i i i i+1 i+1
|chr0mosomez | of | l geney |genegly lKg I
i i+1 i+1 i i
|Chr0mosome i+1 | of | - ‘geneg geneq+1| - | Kg |

(b) New chromosomes.

Fig.9. Crossover process in a GA.

in which we generate a chromosome randomly to avoid a local
minimum/maximum for the fitness function. Now, we have a new
population to test again with the fitness function. The genetic
process is repeated until the termination condition is met (see
Section 4). The learning process in phase 2 with its two stages is
described in Algorithms 2 and 3.

Algorithm 2 (Phase 2 Stage 1: GA learning)

1: Get the state-action pairs from the lookup table.
2: Initialize a set of chromosomes in a population, P, randomly.
3: For each iteration
a: For each chromosome in the population
i: Construct a FLC.
ii: For each state, s,
e Calculate the FLC output, g, using (36).
iii: End
iv: Calculate the fitness value using (41).
b: End
c: Sort the entire chromosomes of the population according to
their fitness values.
d: Select a portion of the sorted population as the new parents.
e: Create a new generation for the remaining portion of the
population using crossover and mutation.
4: End

7.4. Reward-based genetic algorithm learning

For comparative purpose, we will also implement a general
reward-based GA learning technique. The reward-based GA
learning will be initialized with randomly chosen FLC parameters
(chromosomes). The GA adjusts the parameters to maximize the
closing distance given by (40). Therefore, (40) acts as the fitness
function for the reward-based GA learning.

In the proposed QLBGFC, A GA is used in phase 2 stage 1 to tune
the FLC parameters as determined from Q (A)-learning in phase 1.
The GA uses an MSE criterion given by (41) that measures the
difference between control or action defined by Q (1)-learning and
the output of the FLC. The FLC parameters are then tuned by the GA
to achieve the greedy actions defined by Q (A)-learning in phase 1.

Algorithm 3 (Phase 2 Stage 2: GA learning)

1: Initialize a set of chromosomes in a population, P, from the
tuned FLC obtained from stage 1.
2: For each iteration
a: Initialize (X, y.) randomly.
b: Initialize (x,, y,) = (0, 0).
c: Calculate s, = (6, 8) according to (21).
d: For each chromosome in the population
i: Construct a FLC.
ii: For each play
e Calculate the FLC output, up, using (36).
e Observe s; .
iii: End
iv: Observe the fitness value which is the capture time that
the pursuer wants to minimize.
e: End
f: Sort the entire chromosomes of the population according to
their fitness values.
g: Select a portion of the sorted population as the new parents.
h: Create a new generation for the remaining portion of the
population using crossover and mutation.
3: End

In phase 2 stage 2, the GA fine tunes the input and the output
parameters of the FLC to achieve a minimizing capture time. The
learning process in the reward-based GA learning is described in
Algorithm 4.

Algorithm 4 (Reward-based GA learning)

1: Initialize a set of chromosomes in a population, P, randomly.
2: For each iteration
a: Initialize (x,, y.) randomly.
b: Initialize (x,, yp) = (0, 0).
c: Calculate s, = (6, [S) according to (21).
d: For each chromosome in the population
i: Construct a FLC.
ii: For each play
e Calculate the FLC output, u,, using (36).
e Observe s
iii: End
iv: Observe the fitness value defined by (40).
e: End
f: Sort the entire chromosomes of the population according to
their fitness values.
g: Select a portion of the sorted population as the new parents.
h: Create a new generation for the remaining portion of the
population using crossover and mutation.
3: End

8. Computer simulation

We use a core 2 duo with a 2.0 GHz clock frequency and
4.0 Gigabytes of RAM. We do computer simulation with MATLAB
software. Q(A)-learning and GAs have many parameters to be set
a priori therefore we tested computer simulation for different
parameter values and different parameter value combinations
and chose the values that give the best performance. The initial
position of the evader is randomly chosen from a set of 64 different
positions in the space.

8.1. The pursuit-evasion game

The pursuer starts motion from the position (0, 0) with an
initial orientation 6, = 0 and with a constant velocity V, = 1 m/s.

S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33 29

Table 1 Table 2
Values of GAs parameters. Fuzzy decision table after tuning using the proposed QLFIS.
Phase 2 5y
Stage 1 Stage 2 8y N Z P
Number of iterations 800 200 N —0.5452 —0.2595 —0.0693
Population size 40 10 Z —0.2459 0.0600 0.2299
Number of plays - 300 P 0.0235 0.3019 0.5594
Crossover probability 0.2 0.2
Mutation probability 0.1 0.1
Fitness function MSE defined by (41) Capture time Table 3
Fitness function objective Minimize Minimize Fuzzy decision table after tuning using the proposed QLBGFC.
8
The distance between the front and rear axle L, = 0.3 m and the S N z P
steering angle u, € [—0.5, 0.5]. From (19), Rd,,_. =~ 0.55 m. N —1.0927 —0.4378 —0.7388
The evader starts motion from a random position for each z —0.5315 —0.2145 0.0827
episode with an initial orientation 6§, = 0 and with a constant P 0.9100 0.1965 0.0259

velocity V., = 0.5 m/s which is half that of the pursuer (slower).
The distance between the front and rear axle L, = 0.3 m and
the steering angle u, € [—1, 1] which is twice that of the pursuer
(more maneuverable). From (19), Rd, .. >~ 0.19 m which is about
one third that of the pursuer. The duration of a game is 60 s. The
game ends when 60 s passed without capture or when the capture
occurs before the end of this time. The capture radius £ = 0.10 m.
The sampling time is set to 0.1 s.

8.2. The proposed QLFIS

We choose the number of episodes (games) to be 1000, the
number of plays (steps) in each episode is 600, y = 0.95, and
A = 0.9. We make the learning rate for the FIS, n, decrease with
each episode such that

i
n=01-009(— (42)
Max. episodes
and also make the learning rate for the FLC, &, decrease with each
episode such that

i
£§=001-0009 ———— (43)
Max. episodes
where i is the current episode. Note that the value of 7 is 10 times
the value of & i.e. the FIS converges faster than the FLC to avoid
instability in tuning the parameters of the FLC. We choose 0, =
0.08.

8.3. The proposed QLBGFC
We choose the number of episodes to be 200, the number of

plays in each episode is 6000, y = 0.5, and A = 0.3. We make the
learning rate, «, decrease with each episode such that

1
and we also make ¢ decrease with each episode such that
0.1
£ =— (45)

i
where i is the current episode. The position of the evader, (x, y.),
is chosen randomly at the beginning of each episode to cover most
of the states. Table 1 shows the values of GAs parameters used in
phase 2 stage 1 and stage 2.

8.4. Compared techniques

To validate the proposed QLFIS and QLBGFC techniques, we
compare their results with the results of the classical control
strategy, Q(A)-learning only, the technique proposed in [19], and

the reward-based GA learning. The classical control strategies of
the pursuer and the evader are defined by (20) and (21). The
parameters of Q(A)-learning only have the following values: the
number of episodes is set to 1000, the number of plays in each
episode is 6000, y = 0.5 and A = 0.3. The learning rate, «, and
¢ are defined by (44) and (45), respectively.

For the technique proposed in [19], we choose the same values
for the parameters of the NN. The NN has a three-layer structure
with 7-21-1 nodes. The RL parameters and the initial values of the
input and the output parameters of the FLC are all chosen to be the
same as those chosen in the proposed QLFIS. We choose o,, = 0.1
which is decreasing each episode by 1/i where i is the current
episode. The parameters of the reward-based GA learning are
chosen as follows: the number of iterations = 1000, the population
size = 40, the number of plays = 300, the probability of crossover
= 0.2 and the probability of mutation = 0.1.

Note that in phase 2 stage 2 of the proposed QLBGFC we already
have a tuned FLC (obtained from phase 2 stage 1) and we just fine
tune it but in the reward-based GA learning we have no idea about
the FLC parameters so we initialize them randomly. This random
initialization of the FLC will make the pursuer not be able or take a
long time to catch the evader for some iterations and therefore the
learning time will increase as we see in Section 9.

9. Results

Fig. 10 and Table 2 show the input and the output parameters of
the FLC after tuning using the proposed QLFIS, respectively where
“N”, “Z2”, and “P” are referred to the linguistic values “Negative”,
“Zero”, and “Positive”. Fig. 11 and Table 3 show the input and
the output parameters of the FLC after tuning using the proposed
QLBGFC.

Table 4 shows the capture times for different initial positions of
the evader using the classical control strategy of the pursuer, the
Q()\)-learning only, the technique proposed in [19], the reward-
based GA, the proposed QLFIS and the proposed QLBGFC. In
addition, the learning times for the different techniques are also
shown in this table. From Table 4 we can see that although
the Q(A)-learning only has the minimum learning time, it is
not enough to get the desired performance in comparison with
the classical control strategy and the other techniques. The
reward-based GA gets the best performance in comparison to
the other techniques and its performance approaches that of the
classical control strategy. However, the learning process using the
reward-based GA takes a comparatively long learning time. The
proposed QLFIS outperforms the technique proposed in [19] in
both performance and learning time and both of them have better
performance than using the Q(A)-learning only. We can also see

30 S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33

N i i P

0.8+

06

04+

02r

0

N T 7 T T P

08-

06

04

02g

0

L
1 08 06 04 HZ 0 02 04 06 08 1
(a) The input §,,.

1 08 06 04 02 0 02 04 06 08 1
(b) The input §,,.

Fig. 10. MFs for the inputs after tuning using the proposed QLFIS.

081

06+

04

0.2

MR o4

!
0.8 0.6 04 €02 0 02 0.4 0.6
(a) The input §,.

04 02 0 02 04 06 08 1 12 L4

(b) The input 3,,.

Fig. 11. MFs for the inputs after tuning using the proposed QLBGFC.

Table 4

Capture time, in seconds, for different evader initial positions and learning time, in seconds, for the different techniques.

Evader initial position

Learning time

(—6,7) (=7,-7) (2,4) (3,-8)
Classical control strategy 9.6 104 45 8.5 -
Q(1)-learning only 12.6 15.6 85 11.9 32.0
Technique proposed in [19] 10.9 12.9 4.7 9.1 258.6
Reward-based GA 9.7 10.5 45 8.6 460.8
Proposed QLFIS 10.0 10.7 46 8.8 65.2
Proposed QLBGFC 9.9 10.5 4.6 8.7 47.8
Table 5
Fuzzy decision table for the pursuer after tuning using the proposed QLFIS. Table 6
3 Fuzzy decision table for the evader after tuning using the proposed QLFIS.
P .
8 N Y/ P S
Se N y/ P
N —1.2990 —0.6134 —0.4064
z —0.3726 —0.0097 0.3147 N —1.4827 —0.4760 —0.0184
P 0.3223 0.5763 0.9906 z —0.5365 —0.0373 0.5500
P —0.0084 0.4747 1.1182
that the proposed QLBGFC has the best performance as the reward-
based GA. In addition, it takes only 47.8 s in the learning process Table 7
which is about 10% of the learning time taken by the reward-based Fuzzy decision table for the pursuer after tuning using the proposed QLBGFC.
GA and about 18% of the learning time taken by the technique 5,
proposed in []9].. . . 5, N Z P
Now, we will increase the complexity of the model by making
both the pursuer and the evader self-learn their control strategies g _g‘ggzz _?'5‘3‘8(7’ _g';gfé
mmultaqeously. Thg dlfﬁculty in the learning process is that each P 0.8208 0.1499 0.9347
robot will try to find its control strategy based on the control
strategy of the other robot which, at the same time, is still learning.
Fig. 12 and Table 5 show the input and the output parameters Table 8
of the FLC for the pursuer using the proposed QLFIS. Fig. 13 and Fuzzy decision table for the evader after tuning using the proposed QLBGFC.
Table 6 show the input and the output parameters of the FLC for F
the evader using the proposed QLFIS. Fig. 14 and Table 7 show the s Ne Z P
input and the output parameters of the FLC for the pursuer using ‘
the proposed QLBGFC. Fig. 15 and Table 8 show the input and the g 7(]).(1);123 *8‘8%5 *ggg;
output parameters of the FLC for the evader using the proposed P 04332 0.4061 07059

QLBGFC.

S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33 31

7 i i P

08r 1

st /

04r

02+

N Z P

08r

06+

04+

02

0

0

Py

-1 08 -OLS 04 A2
(a) The input .

02 04 06 08 1

-1 08 06 04 02 0 02 04 06 08 1
(b) The input 8.

Fig. 12. MFs for the inputs of the pursuer after tuning using the proposed QLFIS.

08+

06+

04;

02+

0

08F

061

041

02

0

=t

-1 -018 0.6 -0;4 02
(a) The input §,.

02 04 06 08 1

-1 08 06 04 02 0 02 04 0.6 08 1
(b) The input §,.

Fig. 13. MFs for the inputs of the evader after tuning using the proposed QLFIS.

N Z P

08+

06r

045

02}

0

! . i
08 06 04 02 0 02 04 06 08 1 12
(a) The input §,,.

L 1 1 1
08 06 04 -02 0 02 04 06 08 1 12
(b) The input §,,.

Fig. 14. MFs for the inputs of the pursuer after tuning using the proposed QLBGFC.

08

06

04r

02

0

15 -l 05 0 0.5 1 15
(a) The input 8.

-1.5 -1 0.5 0 0.5
(b) The input 5.

Fig. 15. MFs for the inputs of the evader after tuning using the proposed QLBGFC.

To check the performance of the different techniques we cannot
use the capture time as a measure, as we did in Table 4, because
in this game both the pursuer and the evader are learning so we
may find capture times that are smaller than those corresponding
to the optimal solution. Of course that does not mean that the
performance is better than the optimal solution but it means that
the evader does not learn well and as a result it is captured in

a shorter time. Therefore the measure that we use is the paths
of both the pursuer and the evader instead of the capture time.
Figs. 16-20 show the paths of the pursuer and the evader of the
different techniques against the classical control strategies of the
pursuer and the evader. We can see that the best performance
is that of the proposed QLFIS and the proposed QLBGFC. We can
also see that the performance of the reward-based GA diminishes

32 S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33

y-position [m]

x-position [m]

Fig. 16. Paths of the pursuer and the evader (solid line) using the Q(})-learning
only against the classical control strategies (dotted line).

y-position [m]

x-position [m]

Fig. 17. Paths of the pursuer and the evader (solid line) using the technique
proposed in [19] against the classical control strategies (dotted line).

y-position [m]

X-position [m]

Fig. 18. Paths of the pursuer and the evader (solid line) using the reward-based GA
against the classical control strategies (dotted line).

Table 9
Learning time, in seconds, for the different techniques.

Learning time

Q(A)-learning only 62.8
Technique proposed in [19] 137.0
Reward-based GA 602.5
Proposed QLFIS 110.3
Proposed QLBGFC 54.7

as a result of increasing the complexity of the system by making
both the pursuer and the evader learn their control strategies
simultaneously.

Table 9 shows the learning time for the different techniques.
Table 9 shows that the proposed QLBGFC has the minimum
learning time. Finally, we can conclude that the proposed QLBGFC
has the best performance and the best learning time among all
the other techniques. We can also see that the proposed QLFIS still
outperforms the technique proposed in [19] in both performance
and learning time.

18 T T T T

y-position [m]

x-position [m]

Fig. 19. Paths of the pursuer and the evader (solid line) using the proposed QLFIS
against the classical control strategies (dotted line).

y-position [m]

X-position [m]

Fig. 20. Paths of the pursuer and the evader (solid line) using the proposed QLBGFC
against the classical control strategies (dotted line).

10. Conclusion

In this paper, we proposed two novel techniques to tune the
parameters of FLC in which RL is combined with FIS as a function
approximation to generalize the state and the action spaces to
the continuous case. The second technique combines RL with GAs
as a powerful optimization technique. The proposed techniques
are applied to a pursuit-evasion game. First, we assume that the
pursuer does not know its control strategy. However it can self-
learn its control strategy by interaction with the evader. Second,
we increase the complexity of the model by assuming that both
the pursuer and the evader do know their control strategies.
Computer simulation and the results show that the proposed QLFIS
and the proposed QLBGFC techniques outperform all the other
techniques in performance when compared with the classical
control strategy and in the learning time which is also an important
factor especially in on-line applications.

In future work, we will test our proposed technique in a more
complex pursuit-evasion games in which multiple pursuers and
multiple evaders self-learn their control strategies.

References

[1] S. Micera, A.M. Sabatini, P. Dario, Adaptive fuzzy control of electrically
stimulated muscles for arm movements, Medical and Biological Engineering
and Computing 37 (1999) 680-685.

[2] F. Daldaban, N. Ustkoyuncu, K. Guney, Phase inductance estimation for
switched reluctance motor using adaptive neuro-fuzzy inference system,
Energy Conversion and Management 47 (2006) 485-493.

[3] S. Labiod, T.M. Guerra, Adaptive fuzzy control of a class of SISO nonaffine
nonlinear systems, Fuzzy Sets and Systems 158 (10) (2007) 1126-1137.

[4] H.K. Lam, F.H.F. Leung, Fuzzy controller with stability and performance rules
for nonlinear systems, Fuzzy Sets and Systems 158 (2007) 147-163.

[5] H. Hagras, V. Callaghan, M. Colley, Learning and adaptation of an intelligent
mobile robot navigator operating in unstructured environment based on
a novel online fuzzy-genetic system, Fuzzy Sets and Systems 141 (2004)
107-160.

[6] M. Mucientes, D.L. Moreno, A. Bugarin, S. Barro, Design of a fuzzy controller in
mobile robotics using genetic algorithms, Applied Soft Computing 7 (2) (2007)
540-546.

S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22-33 33

[7] LX. Wang, Generating fuzzy rules by learning from examples, IEEE Transac-
tions on Systems, Man, and Cybernetics 22 (1992) 1414-1427.

[8] F. Herrera, M. Lozano,].L. Verdegay, Tuning fuzzy logic controllers by
genetic algorithms, International Journal of Approximate Reasoning 12 (1995)
299-315.

[9] A. Lekova, L. Mikhailov, D. Boyadjiev, A. Nabout, Redundant fuzzy rules
exclusion by genetic algorithms, Fuzzy Sets and Systems 100 (1998) 235-243.

[10] S.F. Desouky, H.M. Schwartz, Genetic based fuzzy logic controller for a wall-
following mobile robot, in: 2009 American Control Conference, IEEE Press, St.
Louis, MO, 2009, pp. 3555-3560.

[11] S.F. Desouky, H.M. Schwartz, Different hybrid intelligent systems applied for
the pursuit-evasion game, in: 2009 IEEE International Conference on Systems,
Man, and Cybernetics, 2009, pp. 2677-2682.

[12] RS. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, 1998.

[13] L.P. Kaelbling, M.L. Littman, A.P. Moore, Reinforcement learning: a survey,
Journal of Artificial Intelligence Research 4 (1996) 237-285.

[14] W.D. Smart, L.P. Kaelbling, Effective reinforcement learning for mobile robots,
in: IEEE International Conference on Robotics and Automation, Washington,
DC, vol. 4,2002, pp. 3404-3410.

[15] C. Ye, N.-H.C. Yung, D. Wang, A fuzzy controller with supervised learning
assisted reinforcement learning algorithm for obstacle avoidance, IEEE
Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 33 (2003)
17-27.

[16] T.Kondo, K. Ito, A reinforcement learning with evolutionary state recruitment
strategy for autonomous mobile robots control, Robotics and Autonomous
Systems 46 (2004) 111-124.

[17] D.A. Gutnisky, B.S. Zanutto, Learning obstacle avoidance with an operant
behavior model, Artificial Life 10 (1) (2004) 65-81.

[18] M. Rodriguez, R. Iglesias, C.V. Regueiro,]. Correa, S. Barro, Autonomous and
fast robot learning through motivation, Robotics and Autonomous Systems 55
(2007) 735-740.

[19] X. Dai, C.K. Li, A.B. Rad, An approach to tune fuzzy controllers based on
reinforcement learning for autonomous vehicle control, IEEE Transactions on
Intelligent Transportation Systems 6 (2005) 285-293.

[20] MJ. Er, C. Deng, Obstacle avoidance of a mobile robot using hybrid learning
approach, IEEE Transactions on Industrial Electronics 52 (2005) 898-905.

[21] H. Xiao, L. Liao, F. Zhou, Mobile robot path planning based on Q-ANN, in: IEEE
International Conference on Automation and Logistics, Jinan, China, 2007, pp.
2650-2654.

[22] R. Vidal, O. Shakernia, HJ. Kim, D.H. Shim, S. Sastry, Probabilistic pur-
suit-evasion games: Theory, implementation, and experimental evaluation,
IEEE Transactions on Robotics and Automation 18 (2002) 662-669.

[23] Y. Ishiwaka, T. Satob, Y. Kakazu, An approach to the pursuit problem on a
heterogeneous multiagent system using reinforcement learning, Robotics and
Autonomous Systems 43 (4) (2003) 245-256.

[24] S.N. Givigi, H.M. Schwartz, X. Lu, A reinforcement learning adaptive fuzzy
controller for differential games, Journal of Intelligent and Robotic Systems
59(1)(2010) 3-30.

[25] L. Jouffe, Fuzzy inference system learning by reinforcement methods, IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 28 (1998) 338-355.

[26] Y. Duan, X. Hexu, Fuzzy reinforcement learning and its application in robot
navigation, in: International Conference on Machine Learning and Cybernetics,
vol. 2, IEEE Press, Guangzhou, 2005, pp. 899-904.

[27] L. Busoniu, R. Babuska, B. de Schutter, A comprehensive survey of multiagent
reinforcement learning, IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 38 (2008) 156-172.

[28] A. Waldock, B. Carse, Fuzzy Q-learning with an adaptive representation,
in: 2008 IEEE 16th International Conference on Fuzzy Systems (FUZZ-IEEE),
Piscataway, NJ, 2008, pp. 720-725.

[29] CJ.CH.Watkins, P. Dayan, Q-learning, Machine Learning 8 (1992) 279-292.

[30] CJ.CH. Watkins, Learning from delayed rewards. Ph.D. thesis, Cambridge
University, 1989.

[31] B. Bhanu, P. Leang, C. Cowden, Y. Lin, M. Patterson, Real-time robot learning,
in: IEEE International Conference on Robotics and Automation, vol. 1, Seoul,
Korea, 2001, pp. 491-498.

[32] K. Macek, . Petrovi¢, N. Peri¢, A reinforcement learning approach to obstacle
avoidance of mobile robots, in: 7th International Workshop on Advanced
Motion Control, Maribor, Slovenia, 2002, pp. 462-466.

[33] T.M. Marin, T. Duckett, Fast reinforcement learning for vision-guided mobile
robots, in: IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 2005, pp. 4170-4175.

[34] Y. Yang, Y. Tian, H. Mei, Cooperative Q-learning based on blackboard
architecture, in: International Conference on Computational Intelligence and
Security Workshops, Harbin, China, 2007, pp. 224-227.

[35] S.F. Desouky, H.M. Schwartz, A novel technique to design a fuzzy logic
controller using Q(X)-learning and genetic algorithms in the pursuit-evasion
game, in: 2009 IEEE International Conference on Systems, Man, and
Cybernetics, San Antonio, TX, 2009, pp. 2683-2689.

[36] C. Deng, M.J. Er, Real-time dynamic fuzzy Q-learning and control of mobile
robots, in: 5th Asian Control Conference, vol. 3, 2004, pp. 1568-1576.

[37] MJ. Er, Y. Zhou, Dynamic self-generated fuzzy systems for reinforcement
learning, in: International Conference on Intelligence For Modelling, Control
and Automation. Jointly with International Conference on Intelligent Agents,
Web Technologies and Internet Commerce, 2005, pp. 193-198.

[38] V. Stephan, K. Debes, H.M. Gross, A new control scheme for combustion pro-
cesses using reinforcement learning based on neural networks, International
Journal of Computational Intelligence and Applications 1(2001) 121-136.

[39] X.W. Yan, Z.D. Deng, Z.Q. Sun, Genetic Takagi-Sugeno fuzzy reinforcement
learning, in: IEEE International Symposium on Intelligent Control, Mexico City,
Mexico, 2001, pp. 67-72.

[40] D. Gu, H. Hu, Accuracy based fuzzy Q-learning for robot behaviours, in:
International Conference on Fuzzy Systems, Budapest, Hungary, vol. 3, 2004,
pp. 1455-1460.

[41] S.P.Singh, R.S. Sutton, Reinforcement learning with replacing eligibility traces,
Machine Learning 22 (1996) 123-158.

[42] E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy
logic controller, International Journal of Man-Machine Studies 7 (1) (1975)
1-13.

[43] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to
modelling and control, IEEE Transactions on Systems, Man and Cybernetics
SMC-15(1985) 116-132.

[44]].H. Holland, Genetic algorithms and the optimal allocation of trials, SIAM
Journal on Computing 2 (2) (1973) 88-105.

[45] D.E. Goldberg, Genetic Algorithms for Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, 1989.

[46] C.Karr, Genetic algorithms for fuzzy controllers, Al Expert 6((2) (1991) 26-33.

[47] L. Ming, G. Zailin, Y. Shuzi, Mobile robot fuzzy control optimization using
genetic algorithm, Artificial Intelligence in Engineering 10 (4)(1996)293-298.

[48] Y.C. Chiou, L.W. Lan, Genetic fuzzy logic controller: An iterative evolution
algorithm with new encoding method, Fuzzy Sets and Systems 152 (2005)
617-635.

[49] R.Isaacs, Differential Game, John Wiley and Sons, 1965.

[50] S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.

[51] S.H. Lim, T. Furukawa, G. Dissanayake, H.F.D. Whyte, A time-optimal control
strategy for pursuit-evasion games problems, in: International Conference on
Robotics and Automation, New Orleans, LA, 2004.

[52] J.Peng, RJ. Williams, Incremental multi-step Q-learning, Machine Learning 22
(1996) 283-290.

[53] L. Jouffe, Actor-critic learning based on fuzzy inference system, in: IEEE
International Conference on Systems, Man, and Cybernetics, Beijing, China,
vol. 1, 1996, pp. 339-344.

[54] X.S. Wang, Y.H. Cheng, J.Q. Yi, A fuzzy actor-critic reinforcement learning
network, Information Sciences 177 (2007) 3764-3781.

w Sameh F. Desouky received his B.Eng. and M.Sc. degree
from the military technical college, Cairo, Egypt in June
1996 and January 2002, respectively. He is currently work-
ing toward the Ph.D. degree in the Department of Systems
and Computer Engineering at Carleton University, Ottawa,
Canada, and his research interests include adaptive and
fuzzy control, genetic algorithms, reinforcement learning,
. and mobile robots.

Howard M. Schwartz received his B.Eng. degree from
MCcGill University, Montreal, Quebec in June 1981 and his
M.Sc. degree and Ph.D. degree from M.LT., Cambridge,
Massachusetts in 1982 and 1987, respectively. He is cur-
rently the chief of the Department of Systems and Com-
puter Engineering at Carleton University, Ottawa, Canada,
and his research interests include adaptive and intelli-
gent control systems, robotics and process control, sys-
tem modeling, system identification, system simulation
X N and computer vision systems.

	Self-learning fuzzy logic controllers for pursuit--evasion differential games
	Introduction
	Related work
	Paper motivation

	Reinforcement learning
	Fuzzy inference system
	Genetic algorithms
	Pursuit-evasion differential game
	The proposed Q (λ) -learning fuzzy inference system
	The proposed Q (λ) -learning based genetic fuzzy logic controller
	Fuzzy logic controller
	Learning in phase 1
	Building the discrete state and action spaces
	Constructing the reward function

	Learning in phase 2
	Coding a FLC into a chromosome

	Reward-based genetic algorithm learning

	Computer simulation
	The pursuit--evasion game
	The proposed QLFIS
	The proposed QLBGFC
	Compared techniques

	Results
	Conclusion
	References

